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Overview

1. Stopping: Searching for a Job
— Job Search
— Job Search with Discounting



Job Search

Accept offer Y¢, continue searching with a per period cost of c.
Interpretation:
Job search (McCall 1970 QJE): TIOLI salary offers Y;, cost to search c.
Selling a house/asset: TIOLI offers Y;, council tax/management fees c.
Y; ~ F, iid; F continuous, strictly increasing.
Assume E[1y,>qYil < o0; Yo =0; P(Y;>¢) > 0.
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Job Search

Accept and get Y; (present value of getting same wage forever);
Refuse and get z and face same problem tomorrow

Markov problem; state variable = Y;
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Job Search

Accept and get Y; (present value of getting same wage forever);
Refuse and get z and face same problem tomorrow

Markov problem; state variable = Y;

Set up Bellman equation; V(Yy) = max{Y, E[V(Y¢1)] — ¢}
(iid = stationary problem)

Value: V(Y})
(handwavy: this presumes a solution and we don't know yet if/why we can do this)

Define V; := V(Y;) and V = E[V(Y;)]
Definej =V -c
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Job Search

Accept and get Y; (present value of getting same wage forever);
Refuse and get z and face same problem tomorrow

Markov problem; state variable = Y;

Set up Bellman equation; V(Yy) = max{Y, E[V(Y¢1)] — ¢}
(iid = stationary problem)

Value: V(Y})
(handwavy: this presumes a solution and we don't know yet if/why we can do this)

Define V; := V(Y;) and V = E[V(Y;)]

Definej =V -c

Take expectations and get j + ¢ = E[max{Y;,#}] < c=E[(Y;-§)]= fyooyd/—"(y)
F continuous and strictly increasing: 31y : ¢ = E[(Y; - §)*]

y: reservation value

Optimal rule: continue if and only if Y; < ¥
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Job Search with Discounting

Accept offer Y;, continue searching and receive z; discount factor g € (0,1).
Interpretation:
Job search: TIOLI salary offers Y;, unemployment subsidy z, cost of time B.
Selling a house/asset: TIOLI offers Y, rent acrued z, interest rate r, discount factor
B=(1+n"".
Y: ~ F, iid; F continuous, strictly increasing.
Assume E[1y,>qYil < 00; Yo =0; P(Y;>¢) > 0.
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Job Search with Discounting

Define ¥; = %Yz (present value).

Accept and get Y; forever = Accept and get V;
Refuse, get z, and face same problem tomorrow but discounted by B.

Markov problem; state variable = \A/t
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Job Search with Discounting

Define ¥; = %Yz (present value).

Accept and get Y; forever = Accept and get V;
Refuse, get z, and face same problem tomorrow but discounted by B.

Markov problem; state variable = \A/t
Set up Bellman equation; V(¥;) = max{¥;, z + BE[V(Yys1)]}
Value: V(Vy)

Brief refresher...
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Refresher

Definition
T : X — Xis a contraction on (X, d) if 38 € [0,1) : d(T(x), T(y)) < &d(x,y) Vx,y € X.
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Refresher

Definition
T : X — Xis a contraction on (X, d) if 38 € [0,1) : d(T(x), T(y)) < &d(x,y) Vx,y € X.

{ Banach Fixed-Point Theorem

Let (X, d) be a non-empty complete metric space and T a contraction mapping on (X, d).
Then, Ix* € X : T(x*) = x*. Moreover, for any xg € X, x* = limp—oo T"(xg), where
T =ToT and T = T.
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Refresher

Definition
T : X — Xis a contraction on (X, d) if 38 € [0,1) : d(T(x), T(y)) < &d(x,y) Vx,y € X.

{ Banach Fixed-Point Theorem

Let (X, d) be a non-empty complete metric space and T a contraction mapping on (X, d).
Then, Ix* € X : T(x*) = x*. Moreover, for any xg € X, x* = limp—oo T"(xg), where
T =ToT and T = T.

Proof
Letxn = T"(xg). Then d(xn+1,Xn) = d(T"(xq), T"(xg)) < 8"d(x7,xg), hence {xn}n is a Cauchy
sequence.

(X, d) complete = Cauchy sequences converge = xp converges to some x* = T(x™).

Take any yo € X\ {xo}; define yn := T"(yo); yn — y*.
If x* #y*, then d(y*, x*) = d(T"(y*), T"(x*)) = §"d(y*, x*) < d(y*,x*), a contradiction.
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Refresher

{ Blackwell’s Conditions for Contraction Mapping

Let B(X) denote the set of bounded real functions on some nonempty set X endowed
with the sup-metric deo. Suppose T : B(X) — B(X) satisfies (i) Vf,g € BX) : f > g —
T(f) > T(g),and (i) 38 € [0,1) s.t. T(f + &) < T(f) + 8o Vf € B(X) and Vo € R+. Then T
is a contraction.
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Refresher

{ Blackwell’s Conditions for Contraction Mapping

Let B(X) denote the set of bounded real functions on some nonempty set X endowed
with the sup-metric deo. Suppose T : B(X) — B(X) satisfies (i) Vf,g € BX) : f > g —
T(f) > T(g),and (i) 38 € [0, 1) s.t. T(f + o) < T(f) + 8o Vf € B(X) and Voo € R+. Then T
is a contraction.

Proof

Foranyf,g € B(X) and x € X, f(x) — g(x) < If(x) - g(X)I < do(f, 9).
() and (ii): f < g+duo(f,g) = T(f) < T(q) + 8duo(f, )

and, symmetrically, T(g) < T(f) + 8doo(f, g).

This implies doo (T(f), T(g)) < 8deo(f, 9).
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Job Search with Discounting

Define ¥; = %Yt (present value).

Accept and get Y; forever = Accept and get ¥;
Refuse, get z, and face same problem tomorrow but discounted by f.

Markov problem; state variable = Vt

Set up Bellman equation; V(¥;) = max{¥;, z + BE[V(Ye1)]}
Value: V(¥;), well-defined

Define V; := V(¥;) and V = E[V(Y})]
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Job Search with Discounting

Define ¥; = %Yt (present value).

Accept and get Y; forever = Accept and get ¥;
Refuse, get z, and face same problem tomorrow but discounted by f.
Markov problem; state variable = Vt
Set up Bellman equation; V(¥;) = max{¥;, z + BE[V(Ye1)]}
Value: V(¥;), well-defined
Define V; := V(¥;) and V = E[V(Y})]
Take expectations and get
V = Elmax{V;,z+BV)] < V(1-B)=z+E[Y; - (z+BV))"] = fzofé\—/ ﬁy dF(y)
F continuous: 3V : V(1 - B) = 2+ E[(V; — (z+ BV))']
7= (1-B)(z + BV): reservation value

Optimal rule: continue if and only if Y; < ¥
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Overview

2. Optimal Stopping: Existence and Regularity
— General Setup
— Regular Stopping Times
— Existence
— Characterisation



Going Beyond the Basic Setting

Y may not be iid
- Depend on time of unemployment
- Result from underlying dynamic game between recruiting firms
- Uncertain market conditions (hence perception of F evolves over time depending
on past Yy)

Gongalves (UCL) Stopping and Choosing



Going Beyond the Basic Setting

Y may not be iid
- Depend on time of unemployment
- Result from underlying dynamic game between recruiting firms
- Uncertain market conditions (hence perception of F evolves over time depending
on past Yy)

Introduce general tools to tackle the problem

Gongalves (UCL) Stopping and Choosing



Setup and Assumptions

{X0, X1, X2, ...} rv whose joint distribution is assumed to be known; write X' := Xe)g=1,..t-
Sequence of functions x! — y;(x') € R; write Y; := yy(x}).

Filtration F = {F} = o(XY).

Adapted payoff process {Y}; terminal Yoo (possibly —oo).

Stopping time t: {t < t} € F; for all t, feasible set T.

Objective: maximise value of Y by adequately choosing stopping time, sup E[Yz].
weT
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Setup and Assumptions

{X0, X1, X2, ...} rv whose joint distribution is assumed to be known; write X' := Xe)g=1,..t-
Sequence of functions x! — y;(x') € R; write Y; := yy(x}).

Filtration F = {F} = o(XY).

Adapted payoff process {Y}; terminal Yoo (possibly —oo).

Stopping time t: {t < t} € F; for all t, feasible set T.

Objective: maximise value of Y by adequately choosing stopping time, sup E[Yz].
weT

Two questions:
1. When is there actually an optimal stopping time? (Is sup actually a max?)
2. If so, what does it look like?

Previous applications: guess and verify or use specific structural assumptions.
Now: use very general assumptions.
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Setup and Assumptions

{X0, X1, X2, ...} rv whose joint distribution is assumed to be known; write X' := Xe)g=1,..t-
Sequence of functions x! — y;(x') € R; write Y; := yy(x}).

Filtration F = {F} = o(XY).

Adapted payoff process {Y}; terminal Yoo (possibly —oo).

Stopping time t: {t < t} € F; for all t, feasible set T.

Objective: maximise value of Y by adequately choosing stopping time, sup E[Yz].
weT

Two questions:
1. When is there actually an optimal stopping time? (Is sup actually a max?)
2. If so, what does it look like?

Previous applications: guess and verify or use specific structural assumptions.
Now: use very general assumptions.

Standing assumptions

(A1) E[sup;q Vi) < oc.

(A2) limi_y o0 E[Y4] < Yoo a.s.
Note: (A1) implies sup, E[Yz] < oo
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Regular Stopping Times

Definition (Regularity)

tisregularif forall t, E[Yz | 7{] > Yy a.s. on{t > t}.
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Regular Stopping Times

{ Definition (Regularity)

tisregularif forall t, E[Yz | 7{] > Yy a.s. on{t > t}.

{ Lemma 1 (Regularity is wloo)

Under (A1), for any stopping time t there exists a regular stopping time p < t with
E[Ypl > ElYz].
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Regular Stopping Times

{ Definition (Regularity)
tisregularif forall t, E[Yz | 7{] > Yy a.s. on{t > t}.

{ Lemma 1 (Regularity is wloo)

Under (A1), for any stopping time t there exists a regular stopping time p < t with
E[Ypl > ElYz].

{ Lemma 2 (Regularity is closed under V)

Under (A1), if tand p are regular, then & := TtV p is regular and E[Yg] > max{E[Yz], E[Yp]}.
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Proof of Lemma 1 (Regularity wloo)
Proof

Fix T with E[|Yz[] < co (true by (A1) since Yz < supg Ys).



Proof of Lemma 1 (Regularity wloo)
Proof

Fix T with E[|Yz[] < co (true by (A1) since Yz < supg Ys).
Define Z; := E[Yz | Ff]and let p := inf{t > 0: Z; < Yy
On{p >t} Y¢ < Z; = E[Yx | F3], so p is regular.
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Proof of Lemma 1 (Regularity wloo)

Proof

Fix T with E[|Yz[] < co (true by (A1) since Yz < supg Ys).

Define Z; := E[Yz | Ff]and let p := inf{t > 0: Z; < Yy
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Proof of Lemma 1 (Regularity wloo)

Proof

Fix T with E[|Yz[] < co (true by (A1) since Yz < supg Ys).

Define Z; := E[Yz | Ff]and let p := inf{t > 0: Z; < Yy

On{p >t} Y¢ < Z; = E[Yx | F3], so p is regular.

On{p=th Yo=Y >Zi =E[Ys | Ft]. On{p =00} Yp =Y = Yz as.
Hence

EDVpl = > Ellipo Vil + Ellipoqy Yool
t=0

> Z E['I{pzt}E[Yr | Fll + E[1(p=oo}YT]
0

~
11

M

Ellp= Y<l + Ellip=oc) Vsl
t=

=

X o

].

Suppose —(p < 1); note that, at {p > t© = t}, Z; = Z¢ = Yz < Z;, a contradiction.
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Proof of Lemma 2 (Regularity is closed under V)
Proof

1. Proving & is regular:

E>t={=1>00Uf=p>1
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Proof of Lemma 2 (Regularity is closed under V)
Proof

1. Proving & is regular:

E>t={E=1>u{=p>1}

On{&=1>thE[Ve | Fil = ElYz | Fi] > Yras. -~ tisregular.

Symmetrically, on {§ = p > t}, E[Vg | F¢l = E[Yp | Fi] > Yrass. - pisregular.
2. Proving E[Yg] > E[Yq] V E[Ypl:

on{E=t=1, Y =Ye = Y.

On{E=p>t=t,&=pandE[Ye | F] =ElVp | Fil > Yt = Yz as.

Hence

E[Yg] = Z E[1(T=t} Yg] + E[1(r=oo} Y&] = Z E[1{T=T}E[Y§ | ]:t]] + E[1{T=oo} Yg]

t=0 t=0
> Eh@:r} Yzl + E[1{1:OO}YT] = E[Yx].
t=0

By a symmetric argument, E[Yg] > max{E[Yz], E[Yp]}.

Gongalves (UCL) Stopping and Choosing



Existence

Theorem (Existence)
Under (A1) and (A2), there is a regular t such that E[Yz] = supyct E[p.

Proof

Take the case V* := sup, et E[Vp] > —oo.
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Theorem (Existence)

Under (A1) and (A2), there is a regular t such that E[Yz] = supyct E[p.

Proof

Take the case V* = supyer E[Yp] > —c0.
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Existence

Theorem (Existence)

Under (A1) and (A2), there is a regular t such that E[Yz] = supyct E[p.

Proof

Take the case V* = supyer E[Yp] > —c0.

By definition of sup, 3 sequence 1y, %y, ... such that E[Y; ] — V*.

Define regularised pn = inf{t > 0 : E[Y; | F] < Y3} let 1y := max{ps, p2, ... pn}, regular.
By the lemmas, V* > E[Yr,] > max,=1_nElYp,] > E[Y; ] = V™.

Define Too = SUP/en Ph- Th POINtwise increasing = pointwise converges to Teo.
Moreover, lim sup,_, o ElYz,] < El[Yz_]a.s. (from (A2)).

Note: by construction, E[lim sup,, Ye,] < E[Yz__]. Since Yz, < sup,, Yn, by Fatou's lemma

and (A1), Elliminfr— oo SUPy Ym = Yr,] < liminfr—oo ElSUPy, Ym = Yr,] = V* =
[im SUPp_s o0 ElYz,] < Ellim sup,_, oo Ya] < ElVz].

Conclude: V* = suppet E[Yp] > E[Yr ] > V™.
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Assumptions

Example

Let X; ~Bernoulli(1/2) iid; Yg := 0, Yy = (2' = ) [T}, X¢ fort € N, Yoo := 0.

Fails (A1): Note supy<; Yy = 2€ = 1 with probability 2~**" for k = 0,1,...,t - 1and with
probability 2" for k = t. Hence Elsup; Y] = 335520 - )27 = o0,

Satisfies (A2): Y; — 0 a.s.

Indeed, no optimal stopping time. Conditional onreachingtwith Y; >0 <= HTH Xo =
1, then don't want to stop: Y; = 20 = 1< 2! =1/2 = (1/2)(2"" = 1) = E[Y;11Y; > 0).
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Assumptions

Example

LletYg:=0,Y;:=1-1/tfort €N, Y = 0.




Assumptions

{ Example

LletYg:=0,Y;:=1-1/tfort €N, Y = 0.
Satisfies (A1): Yy < 1.




Assumptions

{ Example

LletYg:=0,Y;:=1-1/tforteN, Yoo :
Satisfies (A1): Yy < 1.
Fails (A2): Y =+ 1>0 = Y.




Assumptions

[ Example

LletYg:=0,Y;:=1-1/tfort €N, Y = 0.
Satisfies (A1): Yy < 1.
Fails (A2): Y =+ 1>0 = Y.

Indeed, no optimal stopping time as Y; < Yi1.
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Dynamic Programming Principle

Want something like Bellman equation/DPP: stop today or continue assuming optimal
stopping from then on

Need some definitions first...
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Dynamic Programming Principle

Want something like Bellman equation/DPP: stop today or continue assuming optimal
stopping from then on

Need some definitions first...

Definition

Let (X;);e7 be a collection of rv. Z rv is essential supremum of (Xi)ie7, Z = €SS supset X,
if () P(Z > X;) = 1Vt € T (‘probabilistic upper bound’), and (ii) VZ' : P(Z/ > X;) = 1
vt € T,P(Z' > Z) = 1 (smallest probabilistic upper bound).
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Dynamic Programming Principle

Want something like Bellman equation/DPP: stop today or continue assuming optimal
stopping from then on

Need some definitions first...

Definition

Let (X;);e7 be a collection of rv. Z rv is essential supremum of (Xi)ie7, Z = €SS supset X,
if () P(Z > X;) = 1Vt € T (‘probabilistic upper bound’), and (ii) VZ' : P(Z/ > X;) = 1
vt € T,P(Z' > Z) = 1 (smallest probabilistic upper bound).

Lemma 3

Let (X¢)teT be any collection of rv.
An essential supremum always exists.
Furthermore, 3 a countable C C T : supyce Xt = €SS supset Xt.
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Dynamic Programming Principle

Want something like Bellman equation/DPP: stop today or continue assuming optimal
stopping from then on

Need some definitions first...

Definition

Let (X;);e7 be a collection of rv. Z rv is essential supremum of (Xi)ie7, Z = €SS supset X,
if () P(Z > X;) = 1Vt € T (‘probabilistic upper bound’), and (ii) VZ' : P(Z/ > X;) = 1
vt € T,P(Z' > Z) = 1 (smallest probabilistic upper bound).

Lemma 3

Let (X¢)teT be any collection of rv.
An essential supremum always exists.
Furthermore, 3 a countable C C T : supyce Xt = €SS supset Xt.

[ Example

LetU~ U(0,1), T =[0,1], and X; = Tyy=p. SUPte7 Xt = 1 7 €SSSUP;7 X¢ = 0.
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Regularity from T Onward

Notation:
K>V =PX>VY)=1.

"X >YonA'=P{X > YINA) =

Gongalves (UCL)
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Regularity from T Onward

Notation:
XK>Y'=PX>Y)=1
X >YonA =P{X > Y}NA) = P(A).

Definition (Regularity from T onward)

T > Tisregular from T onward if forallt > T, E[Y: | 7¢] > Y+ a.s. on {t > t}.
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Regularity from T Onward

Notation:
X>Y'=PX>Y)=1
X >YonA =P{X > Y}NA) = P(A).

Definition (Regularity from T onward)

T > Tisregular from T onward if forallt > T, E[Y: | 7¢] > Y+ a.s. on {t > t}.

{ Lemma 1’ (Regularity is wloo)

Under (A1), for any stopping time © > T there exists a regular stopping time from T
p > T such that on p < t with E[Yp] > E[Yz].
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Regularity from T Onward

Notation:
X>Y'=PX>Y)=1
X >YonA =P{X > Y}NA) = P(A).

Definition (Regularity from T onward)

T > Tisregular from T onward if forallt > T, E[Y: | 7¢] > Y+ a.s. on {t > t}.

{ Lemma 1’ (Regularity is wloo)

Under (A1), for any stopping time © > T there exists a regular stopping time from T
p > T such that on p < t with E[Yp] > E[Yz].

{ Lemma 2’ (Regularity is closed under V)

Under (A1),ift > Tand p > T are regular from T onward, then & := tV p is regular from
T onward and E[Y¢] > max{E[Yz], E[Yp]}.
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Dynamic Programming Principle
Define:
V{ = esssupE[Yz | Fi]
>t

(optimise from t onward)
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Dynamic Programming Principle

Define:

V{ = esssup E[Yz | il
>t

(optimise from t onward)

Theorem (Dynamic Programming Principle)
Under (A1), Vi = max{Yy, E[V}}; | Fil}.
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Dynamic Programming Principle

Define:

V{ = esssup E[Yz | il
>t

(optimise from t onward)

Theorem (Dynamic Programming Principle)

Under (A1), Vi = max{Y, E[V},; | ).

Proof

1. WTS V< max{Y, EIV5i, | Fi.
Take any stopping time 1. On {t > t}, E[Yz | Fy] < Vi
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Theorem (Dynamic Programming Principle)

Under (A1), Vi = max{Y, E[V},; | ).

Proof

1. WTS V< max{Y, EIV5i, | Fi.
Take any stopping time 1. On {t > t}, E[Yz | Fy] < Vi
= E[Vz | F] = E[E[Vz | Fr] | F] < EIVi | AL



Dynamic Programming Principle

Define:

V{ = esssup E[Yz | il
>t

(optimise from t onward)

Theorem (Dynamic Programming Principle)

Under (A1), Vi = max{Y, E[V},; | ).

Proof

1. WTS V< max{Y, EIV5i, | Fi.
Take any stopping time 1. On {t > t}, E[Yz | Fy] < Vi
= E[Yr | Ft] = E[E[Yz | Fraql | Fi] < EVEL | R
= ElVe | Fil = Yooy Yt + Voo ElYz | il < max{Yy, EV{y | Fil}



Dynamic Programming Principle

Define:

V{ = esssup E[Yz | il
>t

(optimise from t onward)

Theorem (Dynamic Programming Principle)
Under (A1), Vi = max{Yy, E[Vj;q | Fil}.

Proof

1. WTS Vi < max{Yt, E[Vjiy | Fi}.
Take any stopping time 1. On {t > t}, E[Yz | Fy] < Vi
= E[Vz | F] = E[E[Vz | Fr] | F] < EIVi | AL
= ElVe | Fil = Yooy Yt + Voo ElYz | il < max{Yy, EV{y | Fil}
— V§ < max{Yy,EIV} | Fil)
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Dynamic Programming Principle

Define:
V{ = esssup E[Yz | il
>t
(optimise from t onward)

Theorem (Dynamic Programming Principle)
Under (A1), Vi = max{Y:, E[V{i; | Fl}.

Proof

2. WTS Vi > max{Ys, E[Vj,, | Fi}.
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Define:

V{ = esssup E[Yz | il
>t

(optimise from t onward)

Theorem (Dynamic Programming Principle)
Under (A1), Vi = max{Y:, E[V{i; | Fl}.

Proof

2. WTS Vi > max{Ys, E[Vj,, | Fi}.

By Lemma 3, 3 sequence 17, T, ... with T, > t+ 1 such that E[Y; | F] — V{iq.
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Define:

V{ = esssup E[Yz | il
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(optimise from t onward)

Theorem (Dynamic Programming Principle)
Under (A1), Vi = max{Y:, E[V{i; | Fl}.

Proof

2. WTS Vi > max{Ys, E[Vj,, | Fi}.
By Lemma 3, 3 sequence 17, T, ... with T, > t+ 1 such that E[Y; | F] — V{iq.

Define regularised from t+1onward py := inf{¢ > t | E[Y; ] < Y,}; lettn := max{p1, p2, ... pn}.
regular from t onward.



Dynamic Programming Principle

Define:

V{ = esssup E[Yz | il
>t

(optimise from t onward)

Theorem (Dynamic Programming Principle)
Under (A1), Vi = max{Y:, E[V{i; | Fl}.

Proof

2. WTS Vi > max{Ys, E[Vj,, | Fi}.
By Lemma 3, 3 sequence 17, T, ... with T, > t+ 1 such that E[Y; | F] — V{iq.

Define regularised from t+1onward py := inf{¢ > t | E[Y; ] < Y,}; lettn := max{p1, p2, ... pn}.
regular from t onward.

By the lemmas 1" and 2,

Vi > ElYs, | Fi] = E[E[Yx, | Fenl | ] > E | max ElYz, | Finl

]:t:| — E[Vi | F]



Dynamic Programming Principle

Define:

V{ = esssup E[Yz | il
>t

(optimise from t onward)

Theorem (Dynamic Programming Principle)
Under (A1), Vi = max{Y:, E[V{i; | Fl}.

Proof

2. WTS Vi > max{Ys, E[Vj,, | Fi}.
By Lemma 3, 3 sequence 17, T, ... with T, > t+ 1 such that E[Y; | F] — V{iq.

Define regularised from t+1onward py := inf{¢ > t | E[Y; ] < Y,}; lettn := max{p1, p2, ... pn}.
regular from t onward.

By the lemmas 1" and 2,

Vi > ElYs, | Fi] = E[E[Yx, | Fenl | ] > E | max ElYz, | Finl

Since, trivially, Vi > Y, we get Vi > max{Y;, E[V}4 | Fil}-

]:t:| — E[Vi | F]
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Dynamic Programming Principle

Vi = esssup E[Yz | 71l = max{Yy, E[Vii | Fil);
>t

=inf{t > 01 Yy = Vi)

Example

LetYg:=0,Y;:=1-1/tfort €N, Yo = 0.
Satisfies (A1): Yy < 1.

Fails (A2): Y; — 1> 0 = Yeo.

Indeed, no optimal stopping time as Y; < Y.
Note: 7* = co and Y¢= = 0 < V.
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Characterising Optimal Stopping Time

Vi = esssup E[Yz | 71l = max{Yy, E[Vii | Fil);
>t

=inf{t > 01 Yy = Vi)

Lemma

Take any stopping time t. Under (A1), E[Yzag<] > E[Y4].
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Characterising Optimal Stopping Time

Vi = esssUpE[Ye | F] = max{Y, E[Viq | il 5 =inf{t > 01 Y, = V{}
>t

Lemma

Take any stopping time t. Under (A1), E[Yzag<] > E[Y4].

Stopping whenever t* says to stop can only improve the expected payoff.
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Characterising Optimal Stopping Time

Vi = esssup E[Yz | 71l = max{Yy, E[Vii | Fil);
>t

=inf{t > 01 Yy = Vi)

Lemma

Take any stopping time t. Under (A1), E[Yzar] > E[Y4].

Proof

On{t* = t<m, Yor = Yy = V& > ElYz | AL
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Vi = esssup E[Yz | 71l = max{Yy, E[Vii | Fil);
>t

=inf{t > 01 Yy = Vi)

Lemma

Take any stopping time t. Under (A1), E[Yzar] > E[Y4].

Proof

On{t* =t<1}, Ye= = Y; = V{ > E[Yc | F] Hence,
E[YT/\T*] = E[1{1*<1}Y’C*] + E[1{1* ZT}Y’C]
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>t

Lemma

Take any stopping time t. Under (A1), E[Yzar] > E[Y4].

Proof

On{t* =t<1}, Ye= = Y; = V{ > E[Yc | F] Hence,
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Characterising Optimal Stopping Time

Vi = esssup E[Yz | 71l = max{Yy, E[Vii | Fil);
>t

=inf{t > 01 Yy = Vi)

Lemma

Take any stopping time t. Under (A1), E[Yzar] > E[Y4].

Proof

On{t* =t<1}, Ye= = Y; = V{ > E[Yc | F] Hence,
E[YT/\T*] = E[1{1*<1}Y’C*] + E[1{1* ZT}Y’C]

=E [Z 1(1**1}\4] + E[le > Yal

t=0

=E [Z 1(1*:@%*] +Ellgge > Yal

t=0

>E [Zurhm)E[YT | ]—}]] +Ellgz- > Yal = ElY4l.

t=0
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Characterising Optimal Stopping Time

Vi = esssUpE[Ye | F] = max{Y, E[Viq | il 5 =inf{t > 01 Y, = V{}
>t

Theorem (Optimal Stopping Time)

Under (A1), if an optimal stopping time exists, ©* is optimal.
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Characterising Optimal Stopping Time

Vi = esssupE[Yr | F] = max{Yy, E[Viq | Fil) =inf{t > 01 Yy = Vi)
>t

Theorem (Optimal Stopping Time)

Under (A1), if an optimal stopping time exists, ©* is optimal.

Proof

Let t be an optimal stopping time.



Characterising Optimal Stopping Time

Vi = esssUpE[Ye | F] = max{Y, E[Viq | il 5 =inf{t > 01 Y, = V{}
>t

Theorem (Optimal Stopping Time)

Under (A1), if an optimal stopping time exists, ©* is optimal.

Proof

Let t be an optimal stopping time.

By Lemma 4, 7" := © A " must also be optimal.



Characterising Optimal Stopping Time

Vi = esssUpE[Ye | F] = max{Y, E[Viq | il 5 =inf{t > 01 Y, = V{}
>t

Theorem (Optimal Stopping Time)

Under (A1), if an optimal stopping time exists, ©* is optimal.

Proof

Let t be an optimal stopping time.
By Lemma 4, 7" := © A " must also be optimal.

By Lemma 1, there is a reqular ©” : E[Yy] > E[Yy]and 7 < v < t*. Hence, ©/ must
also be optimal.



Characterising Optimal Stopping Time

Vi = esssUpE[Ye | F] = max{Y, E[Viq | il 5 =inf{t > 01 Y, = V{}
>t

Theorem (Optimal Stopping Time)

Under (A1), if an optimal stopping time exists, ©* is optimal.

Proof

Let t be an optimal stopping time.
By Lemma 4, 7" := © A " must also be optimal.

By Lemma 1, there is a reqular ©” : E[Yy] > E[Yy]and 7 < v < t*. Hence, ©/ must
also be optimal.

Finally, by Lemma 2, 7" vt* must also be optimal. Note thatt”/ vt* = ©* by construction.
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Characterising Optimal Stopping Time

Vi = esssup ElYz | A = max{Y;, E[V{iq | Ak
>t

T=inf{t > 01 Ye = Vi =inf{t > 01 Yy > E[Vi | A}

It can be shown that t* is the earliest optimal stopping time, i.e.,, t* < tV optimal t.

(Intuition: If T =t < t*, then Y; < V{ and an improvement can be reached)
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Characterising Optimal Stopping Time

Vi = esssup ElYz | A = max{Y;, E[V{iq | Ak
>t

T=inf{t > 01 Ye = Vi =inf{t > 01 Yy > E[Vi | A}

It can be shown that t* is the earliest optimal stopping time, i.e.,, t* < tV optimal t.

(Intuition: If T =t < t*, then Y; < V{ and an improvement can be reached)

Another stopping time: ©** = inf{t > 0| Y; > E[V}}; | Fil}

It can be shown that t** is the latest optimal stopping time, i.e., T < t** V optimal 1.
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Overview

3. Satisficing
— Setup
— Solving the Problem
— Choice and Payoffs
— Expected Stopping Time
— Comparative Statics



Satisficing

Oftentimes DM don't consider all items (virtually impossible in online shopping...).

DM knows there is a large set of feasible items but doesn't quite known what they are.
Upon stopping their search, pick best item available.

When to stop searching?
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Satisficing

Oftentimes DM don't consider all items (virtually impossible in online shopping...).

DM knows there is a large set of feasible items but doesn't quite known what they are.
Upon stopping their search, pick best item available.

When to stop searching?

Setup
DM faces a large choice set A with T items.
Parsing through the item list bears a cost ¢ > 0.

Prior about the value of each option X; id F, absolutely continuous, strictly
increasing.
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Satisficing

Oftentimes DM don't consider all items (virtually impossible in online shopping...).

DM knows there is a large set of feasible items but doesn't quite known what they are.
Upon stopping their search, pick best item available.

When to stop searching?

Setup
DM faces a large choice set A with T items.
Parsing through the item list bears a cost ¢ > 0.

Prior about the value of each option X; id F, absolutely continuous, strictly
increasing.

Proposition

Let M; := maxs<tXs and X : ¢ = [~ (X = X) dF(X). Then, t} = inf{t > 0 [ M; > X} A T is
optimal.
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Satisficing
Solving the Problem (Backwards induction intuition)
At T - 1: stop and get Mr_q — (T = T)c or continue and get E[Mt | Fr_4] - Tc.
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Satisficing
Solving the Problem (Backwards induction intuition)
At T - 1: stop and get Mr_q — (T = 1)c or continue and get E[M1 | Fr- 1] - Tc.

MT 1 (T‘1)C<E[MT|.FT -Tc= f T1MT 1dF fM XdF -Tc <—
C<fM X MT 1)dF( ) f X X dF )
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Satisficing
Solving the Problem (Backwards induction intuition)
At T - 1: stop and get Mr_q — (T = 1)c or continue and get E[M1 | Fr- 1] - Tc.
Mro1=(T-1c <EM7 | Frq]-Tc= f”l\/lT1dF fM XdF(X) - Tc <
c<fM (x = M—q) dF(X). = [ (X = X) dF(X).
Stopat T —1if My—q > X.
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Satisficing
Solving the Problem (Backwards induction intuition)

At T - 1: stop and get Mr_q — (T = 1)c or continue and get E[M1 | Fr- 1] - Tc.

Mro1=(T-1c <EM7 | Frq]-Tc= I”MT1dF fM XdF(X) - Tc <
c<fM (x = M—q) dF(X). = [ (X = X) dF(X).

Stopat T —1if My—q > X.

At T - 2: stop and get M7_5 — (T = 2)c or continue and get
Elmax{Mr_1 = (T = N)c, M7 = Tc} | Frool.
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Satisficing
Solving the Problem (Backwards induction intuition)

At T - 1: stop and get Mr_q — (T = 1)c or continue and get E[M1 | Fr- 1] - Tc.

Mr—q = (T=1c <E[My | Frql-Tc = I”MT1dF fM XdF(X) - Tc <
c<fM (x = M—q) dF(X). = [ (X = X) dF(X).

Stopat T —1if M1 > X.

At T - 2: stop and get M7_5 — (T = 2)c or continue and get
Elmax{Mr_1 = (T = N)c, M7 = Tc} | Frool.

Suppose Mr_, > X. Then upon continuing would stop at T — 1 and get
max{Mr—9,X7-1} = (T = 1)c.
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Satisficing
Solving the Problem (Backwards induction intuition)

At T - 1: stop and get Mr_q — (T = 1)c or continue and get E[M1 | Fr- 1] - Tc.

Mr—q = (T=1c <E[My | Frql-Tc = I”MT1dF fM XdF(X) - Tc <
c<fM (x = M—q) dF(X). = [ (X = X) dF(X).

Stopat T —1if My—q > X.

At T - 2: stop and get M7_5 — (T = 2)c or continue and get
Elmax{Mr_1 = (T = N)c, M7 = Tc} | Frool.

Suppose Mr_, > X. Then upon continuing would stop at T — 1 and get
max{Mr—9,X7-1} = (T = 1)c.

Better to stop now and get My_, — (T = 2)c if

M7 = (T=2)c <EM7_q | Fropl - (T-T)c <= c < /MOO (X = Mr-2) dF(X)

<~ M, >X (as is by assumption).
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Satisficing
Solving the Problem (Backwards induction intuition)

At T - 1: stop and get Mr_q — (T = 1)c or continue and get E[M1 | Fr- 1] - Tc.

Mr—q = (T=1c <E[My | Frql-Tc = f”MT1dF fM XdF(X) - Tc <
c<fM (x = M—q) dF(X). = [{7(X = X) dF(X).

Stopat T —1if My—q > X.

At T - 2: stop and get M7_5 — (T = 2)c or continue and get
Elmax{Mr_1 = (T = N)c, M7 = Tc} | Frool.

Suppose Mr_, > X. Then upon continuing would stop at T — 1 and get
max{Mr—9,X7-1} = (T = 1)c.

Better to stop now and get My_, — (T = 2)c if

M7 = (T=2)c <EM7_q | Fropl - (T-T)c <= c < /MOO (X = Mr-2) dF(X)

<~ M, >X (as is by assumption).

Suppose Mr_5 < X. Then, if it were to end at T — 1 would anyway continue; more so
given the option value.
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Satisficing
Solving the Problem (Backwards induction intuition)

At T - 1: stop and get Mr_q — (T = 1)c or continue and get E[M1 | Fr- 1] - Tc.

Mr—q = (T=1c <E[My | Frql-Tc = f”MT1dF fM XdF(X) - Tc <
c<fM (x = M—q) dF(X). = [{7(X = X) dF(X).

Stopat T —1if My—q > X.

At T - 2: stop and get M7_5 — (T = 2)c or continue and get
Elmax{Mr_1 = (T = N)c, M7 = Tc} | Frool.

Suppose Mr_, > X. Then upon continuing would stop at T — 1 and get
max{Mr—9,X7-1} = (T = 1)c.

Better to stop now and get My_, — (T = 2)c if

M7 = (T=2)c <EM7_q | Fropl - (T-T)c <= c < /MOO (X = Mr-2) dF(X)

<~ M, >X (as is by assumption).

Suppose Mr_5 < X. Then, if it were to end at T — 1 would anyway continue; more so
given the option value.

Conclusion: Stopat T — 2 if Mr_p > X.
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Satisficing
Solving the Problem (Backwards induction intuition)

At T - 1: stop and get Mr_q — (T = 1)c or continue and get E[M1 | Fr- 1] - Tc.

Mr—q = (T=1c <E[My | Frql-Tc = f”MT1dF fM XdF(X) - Tc <
c<fM (x = M—q) dF(X). = [{7(X = X) dF(X).

Stopat T —1if My—q > X.

At T - 2: stop and get M7_5 — (T = 2)c or continue and get
Elmax{Mr_1 = (T = N)c, M7 = Tc} | Frool.

Suppose Mr_, > X. Then upon continuing would stop at T — 1 and get
max{Mr—9,X7-1} = (T = 1)c.

Better to stop now and get My_, — (T = 2)c if

M7 = (T=2)c <EM7_q | Fropl - (T-T)c <= c < /MOO (X = Mr-2) dF(X)

<~ M, >X (as is by assumption).

Suppose Mr_5 < X. Then, if it were to end at T — 1 would anyway continue; more so
given the option value.
Conclusion: Stopat T — 2 if Mr_p > X.

Induntian: ~* -— inf/t S~ N1 M. > YU A Tic antimal (handwawnr rinaranie nranf latar )
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Satisficing

Satisficing solution: DM stops whenever has seen something “good enough”
TF=inft>0 (M >XpAT.

Remark

et T = M-;;:Xt.

Stop only if lastitem seenis best! 17 =t < T = Mzz = Xt.
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Satisficing

Satisficing solution: DM stops whenever has seen something “good enough”
TF=inft>0 (M >XpAT.

Remark

et T = M-;;:Xt.

Stop only if lastitem seenis best! 17 =t < T = Mzz = Xt.

Proposition

DM chooses X; if X; A X > maxsx Xs A X and only if X¢ A X > maxs Xs A X.
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Proposition
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Proof

If part.
Suppose Xp A X > MaxXs Xs AX.
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Proposition

DM chooses X; if Xt A X > maxsx Xs A X and only if X¢ A X > maxsx Xs A X.

Proof

If part.
Suppose Xp A X > MaxXs Xs AX.
Case 1. X; > X.
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If part.
Suppose Xp A X > MaxXs Xs AX.
Case 1. X; > X.

Then, X > maxs Xs and DM won't stop before t because M;—1 < maxs Xs < X.
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Proposition
DM chooses X; if Xt A X > maxsx Xs A X and only if X¢ A X > maxsx Xs A X.

Proof

If part.

Suppose Xp A X > MaxXs Xs AX.

Case 1. X; > X.
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At t, the DM stops (X; > X) and chooses t (X; > M;_q).



Satisficing

Proposition

DM chooses X; if Xt A X > maxsx Xs A X and only if X¢ A X > maxsx Xs A X.

Proof

If part.

Suppose Xp A X > MaxXs Xs AX.

Case 1. X; > X.

Then, X > maxs Xs and DM won't stop before t because M;—1 < maxs Xs < X.
At t, the DM stops (X; > X) and chooses t (X; > M;_q).

Case 2. X > X; > maxsx Xs A X. Never stop until T; after going through all the items,
choose X; > maxgs-t Xs.



Satisficing

Proposition

DM chooses X; if X; A X > maxsx Xs A X and only if X¢ A X > maxss Xs A X.

Proof

If part.

Suppose Xp A X > MaxXs Xs AX.

Case 1. X; > X.

Then, X > maxs Xs and DM won't stop before t because M;—1 < maxs Xs < X.
At t, the DM stops (X; > X) and chooses t (X; > M;_q).

Case 2. X > X; > maxsx Xs A X. Never stop until T; after going through all the items,
choose X; > maxgs-t Xs.

Only if part.
Suppose X; AX < Maxs Xs AX.



Satisficing

Proposition

DM chooses X; if X; A X > maxsx Xs A X and only if X¢ A X > maxss Xs A X.

Proof

If part.

Suppose Xp A X > MaxXs Xs AX.

Case 1. X; > X.

Then, X > maxs Xs and DM won't stop before t because M;—1 < maxs Xs < X.
At t, the DM stops (X; > X) and chooses t (X; > M;_q).

Case 2. X > X; > maxsx Xs A X. Never stop until T; after going through all the items,
choose X; > maxgs-t Xs.

Only if part.
Suppose X; A X < maxg Xs A X. Then X; is never chosen.
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Satisficing

Satisficing solution: DM stops whenever has seen something “good enough”
TF=inft>0 (M >XpAT.

Remark

et T = M-;;:Xt.

{ Proposition

DM chooses X; if X; A X > maxsx Xs A X and only if X¢ A X > maxs Xs A X.

{ Corollary

E[Xq;;] = E[maxtST Xt A )_(]

Dependence on ¢ only through X.
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Satisficing

Remark

_E(7\T1
Efe] = 8-

Proof

Since P(r; >t) = 1—P(r’; < t=1) = 1=y S5 (A-FERIFES™ = 1-1n(1-FR)T).

i

Note that

sign(ZE[t}]) = sign(F()+FE) (T -1)-F@)"T) = sign(+FE(T-1)-F®'T) >0
for F(x) € (0,1).
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Comparative Statics

{ Remark

() tc = | x = | ElX:] El7);
(i) F" MPSof F = X’ > X (higher option value) = 1 E[XT;], Elt}];

(iii) F'(x) = F(x — ) (shiftinmean) = X' =x+u
= EXG]=EXe:]+p Elyl = ERTL

(iv) X remains constant wrt T.
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Overview

4. Simple Stopping Rules and Monotone Problems
- Simple Stopping Rules
— Monotone Problems
— Approximating Infinite Horizon by Finite Horizon



Setup and Assumptions

{X0. X1, X2, ..} v whose joint distribution is assumed to be known; write X' := (X) = .

Sequence of functions x' — y;(x') € R; write Y; := yy(x}).
Filtration F = {F} = o(XY).

Adapted payoff process {Y;}; terminal Yoo (possibly —oo).
Stopping time t: {t < t} € F; for all t; feasible set T.
Truncation: T terminal time; Stopping times: Ty = {t < T}.

Objective: maximise value of Y by adequately choosing stopping time,

VéT) = sup E[Yz).
TeTT
Note: T finite /= Ty finite (not finite in general)
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Setup and Assumptions

{X0. X1, X2, ..} v whose joint distribution is assumed to be known; write X' := (X) = .

Sequence of functions x' — y;(x') € R; write Y; := yy(x}).
Filtration F = {F} = o(XY).

Adapted payoff process {Y;}; terminal Yoo (possibly —oo).
Stopping time t: {t < t} € F; for all t; feasible set T.
Truncation: T terminal time; Stopping times: Ty = {t < T}.

Objective: maximise value of Y by adequately choosing stopping time,

VéT) = sup E[Yz).
TeTT
Note: T finite /= Ty finite (not finite in general)
Backward Induction: \/(TT) =Y, Vtm =max{Ys, E[VEL) | FLt=T-1T-2,..,0.

Guarantees existence of optimal stopping time.
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Setup and Assumptions

{X0. X1, X2, ..} v whose joint distribution is assumed to be known; write X' := (X) = .

Sequence of functions x' — y;(x') € R; write Y; := yy(x}).
Filtration F = {F} = o(XY).

Adapted payoff process {Y;}; terminal Yoo (possibly —oo).
Stopping time t: {t < t} € F; for all t; feasible set T.
Truncation: T terminal time; Stopping times: Ty = {t < T}.

Objective: maximise value of Y by adequately choosing stopping time,

VéT) = sup E[Yz).
TeTT
Note: T finite /= Ty finite (not finite in general)
Backward Induction: \/(TT) =Y, Vtm =max{Ys, E[VEL) | FLt=T-1T-2,..,0.
Guarantees existence of optimal stopping time.

For truncation in problems when continuing forever is valuable, replace
Y(TT) = max{Y7,E[Yeo | F7]}
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Simple Stopping Rules

One-Stage Look-Ahead Stopping Time: T, := inf{t > 0| Y; > E[Yuq | Fl}.
Myopic stopping: stop as soon as it doesn’t pay off continuing for one more period.
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Simple Stopping Rules

One-Stage Look-Ahead Stopping Time: 1., := inf{t > 0] Y; > E[Vy4q | A}

Myopic stopping: stop as soon as it doesn’t pay off continuing for one more period.
k-Stage Look-Ahead Stopping Time: 7, o, := inf{t > 0| Y, > EV&H) | 7)),

Stop if continuing for at most k more periods isn't worthwhile.

Naive: not considering that next period will consider the following k periods
instead of k = 1.
(t+K) . V(t+k)

Note: Yy > EVE9 | Al = vy > VIR v = maxqy,, VIR | ).
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Simple Stopping Rules

One-Stage Look-Ahead Stopping Time: 1., := inf{t > 0] Y; > E[Vy4q | A}

Myopic stopping: stop as soon as it doesn’t pay off continuing for one more period.
k-Stage Look-Ahead Stopping Time: 7, o, := inf{t > 0| Y, > EV&H) | 7)),

Stop if continuing for at most k more periods isn't worthwhile.

Naive: not considering that next period will consider the following k periods
instead of k = 1.
Note: Yy > EVE9 | Al = vy > VIR v = maxqy,, VIR | ).
One-Time Look-Ahead Stopping Time: T, := inf{t > 0| Y; > supy.q E[Yese | Ftl}-
Continue iff 3¢ > 0 : committing to continue £ periods more is better than stopping.
Naively committed: t + £ may decide to continue again.
Tisla < Ti-tla Th-sla < T
Moreover, E[Yz, ] < ElYr..] ElYa.] < E[Yz<].
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Monotone Problems

T-sla is optimal in selling a house, satisficing.

When is myopic stopping optimal?
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Monotone Problems

T-sla is optimal in selling a house, satisficing.

When is myopic stopping optimal?

Definition

Let A := {Y; > E[Ys4q | Fil}. The stopping problem is monotone if Ay C Asq a.s. for any
t=0,1,.,T -1 where T € NU {co}.

Gongalves (UCL) Stopping and Choosing 35



Monotone Problems

T-sla is optimal in selling a house, satisficing.

When is myopic stopping optimal?

{ Definition

Let A := {Y; > E[Ys4q | Fil}. The stopping problem is monotone if Ay C Asq a.s. for any
t=0,1,.,T -1 where T € NU {co}.

Theorem

In finite horizon monotone stopping problems, tq_g5 is optimal.
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Monotone Problems

Theorem

In finite horizon monotone stopping problems, 1,5 is optimal.

Proof

Let horizon be T. Earliest optimal stopping t* = inf{t > 0 | Yy > E[V(T) | F} with

t+1
W) = —soand VI = v
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Monotone Problems

Theorem

In finite horizon monotone stopping problems, 1,5 is optimal.

Proof

Let horizon be T. Earliest optimal stopping t* = inf{t > 0 | Yy > E[V(T) | F} with

t+1
W) = —soand VI = v

Bwd induction: V) = max{,, EV) | ]).
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Monotone Problems

Theorem

In finite horizon monotone stopping problems, 1,5 is optimal.

Proof

Let horizon be T. Earliest optimal stopping t* = inf{t > 0 | Yy > E[V(T) | F} with

t+1
W) = —soand VI = v

Bwd induction: V) = max{,, EV) | ]).

Fixt<T.Note g, >t = T >t. Suppose T4, = L.
Since {T1.ga = t} = {Y¢ > E[Yi41 | Fl} = A; and problem is monotone,

.
Yra > ElYr | Fral = Y7 = V(T_)1i



Monotone Problems

Theorem

In finite horizon monotone stopping problems, 1,5 is optimal.

Proof

Let horizon be T. Earliest optimal stopping t* = inf{t > 0 | Yy > E[V(T) | F} with

t+1
W) = —soand VI = v

Bwd induction: V) = max{,, EV) | ]).

Fixt<T.Notetgy >t = 1% >t. Suppose Tyq5 = t.

Since {T1.ga = t} = {Y¢ > E[Yi41 | Fl} = A; and problem is monotone,
Yro 2 ElYr | Fral = Yrq = V(TT_)1;

Yr_g > ElVrq | Frgl = EV, | Frog) = Yrop = VD,



Monotone Problems

Theorem

In finite horizon monotone stopping problems, 1,5 is optimal.

Proof

Let horizon be T. Earliest optimal stopping t* = inf{t > 0 | Yy > E[ m | F} with

V) = —ooand Vi = vr.

Bwd induction: V§ D) = max{v;, EV{ 1 )| Al

Fixt<T.Notetgy >t = 1% >t. Suppose Tyq5 = t.

Since {T1.ga = t} = {Y¢ > E[Yi41 | Fl} = A; and problem is monotone,
Yro 2 ElY7 | Frql = Y1 = V(TT_)1;

Yr_o > ElY7-1 | Froo] = E[Vg—T_)1 | Frool = Y72 = Vs't)zi

Ye > ElY | A = EVD | Al = v =V,
Hence, t* = t.
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Approximating Infinite Horizon by Finite Horizon

Goal: WT use finite horizon result to understand when myopic stopping is optimal in
infinite horizon problem.
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Approximating Infinite Horizon by Finite Horizon

Goal: WT use finite horizon result to understand when myopic stopping is optimal in
infinite horizon problem.

Standing assumptions
(A1) E[supyq Vi) < oc.
(A2) limy— o0 E[Y{] < Yoo a.s.
(A3) limMt_soe Yt = Yoo @.S.
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Approximating Infinite Horizon by Finite Horizon

Goal: WT use finite horizon result to understand when myopic stopping is optimal in
infinite horizon problem.
Standing assumptions
(A1) E[supyq Vi) < oc.
(A2) limy— o0 E[Y{] < Yoo a.s.
(A3) limMt_soe Yt = Yoo @.S.

Definition

{X3} are uniformly integrable if lima— oo sUp; E[X¢1x,5a)] = 0.

Conditions for uniform integrability:
1. limi_ o0 E[IX¢l] = 0, then {X;}; is uniform integrable.
2. limi_y o0 E[IX¢]] = 00, then {X;}; is not uniform integrable.
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Approximating Infinite Horizon by Finite Horizon

Standing assumptions: (A1) E[supy>q V¢] < oo, (A3)limi00 ¥ = Yoo @S

Theorem

Assume (A1) and (A3). If Z; := supj>; Y; = Yt is uniformly integrable, then V(()T) — V*as
T — o0.
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Approximating Infinite Horizon by Finite Horizon

Standing assumptions: (A1) E[supy>q V¢] < oo, (A3)limi00 ¥ = Yoo @S

Theorem

Assume (A1) and (A3). If Z; := supj>; Y; = Yt is uniformly integrable, then V(()T) — V*as
T — oc.

Proof

Let Ar ={T <1* < co}.
0 < (VA V(()T) < E[Yﬂc* - YT*/\T] = E[1{AT}(YT* - YT)] + E[1{t*:oo}(YOO - YT)]
< EllppZr] +El(Yoo = Y7)'1.



Approximating Infinite Horizon by Finite Horizon

Standing assumptions: (A1) E[supy>q V¢] < oo, (A3)limi00 ¥ = Yoo @S

Theorem

Assume (A1) and (A3). If Z; := supj>; Y; = Yt is uniformly integrable, then V(()T) — V*as
T — oc.

Proof

Let Ar ={T <1* < co}.
0 < (VA V(()T) < E[Yﬂc* - YT*/\T] = E[1{AT}(YT* - YT)] + E[1{t*:oo}(YOO - YT)]
< EllppZr] +El(Yoo = Y7)'1.
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Approximating Infinite Horizon by Finite Horizon

Standing assumptions: (A1) E[supy>q V¢] < oo, (A3)limi00 ¥ = Yoo @S

Theorem

Assume (A1) and (A3). If Z; := supj>; Y; = Yt is uniformly integrable, then V(()T) — V*as
T — oc.
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Approximating Infinite Horizon by Finite Horizon

Standing assumptions: (A1) E[supy>q V¢] < oo, (A3)limi00 ¥ = Yoo @S

Theorem

Assume (A1) and (A3). If Z; := supj>; Y; = Yt is uniformly integrable, then V(()T) — V*as
T — oc.

Proof

LetAr ={T<t* <oc).  0<V* =V <Ef1y 271+ El(Yeo - V7)'].
1st term goes to zero.




Approximating Infinite Horizon by Finite Horizon

Standing assumptions: (A1) E[supy>q V¢] < oo, (A3)limi00 ¥ = Yoo @S

Theorem

Assume (A1) and (A3). If Z; := supj>; Y; = Yt is uniformly integrable, then VéT) — V*as
T — oc.

Proof

LetAr ={T<t* <oc).  0<V* =V <Ef1y 271+ El(Yeo - V7)'].
1st term goes to zero.
Let g7 = P(A7) — 0. By uniform integrability of Z7,

E[1{AT}ZT] = E[1{AT}1{ZTSQ}1/2}ZT] + E[1(AT}1{ZT>q}V2)ZT] < q17_/2 + E[1{Zr>q}1/2}ZT] — 0.




Approximating Infinite Horizon by Finite Horizon

Standing assumptions: (A1) E[supy>q V¢] < oo, (A3)limi00 ¥ = Yoo @S

Theorem

Assume (A1) and (A3). If Z; := supj>; Y; = Yt is uniformly integrable, then VéT) — V*as
T — oc.

Proof

LetAr ={T<t* <oc).  0<V* =V <Ef1y 271+ El(Yeo - V7)'].
1st term goes to zero.
Let g7 = P(A7) — 0. By uniform integrability of Z7,

E[1{AT}ZT] = E[1{AT}1{ZTSQ}1/2}ZT] + E[1(AT}1{ZT>q}V2)ZT] < q17_/2 + E[1{Zr>q}1/2}ZT] — 0.
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Approximating Infinite Horizon by Finite Horizon

Standing assumptions: (A1) E[supy>q V¢] < oo, (A3)limi00 ¥ = Yoo @S

Theorem

Assume (A1) and (A3). If Z; := supj>; Y; = Yt is uniformly integrable, then V(()T) — V*as
T — oc.

Proof

LetAr ={T<t* <oc).  0<V* =V <Ef1y 271+ El(Yeo - V7)'].
1st term goes to zero.




Approximating Infinite Horizon by Finite Horizon

Standing assumptions: (A1) E[supy>q V¢] < oo, (A3)limi00 ¥ = Yoo @S

Theorem

Assume (A1) and (A3). If Z; := supj>; Y; = Yt is uniformly integrable, then VéT) — V*as
T — oc.

Proof

LetAr ={T<t* <oc).  0<V* =V <Ef1y 271+ El(Yeo - V7)'].
1st term goes to zero.

2nd term goes to zero. Leter — 0: P(Yoo — Y7 > €7) — 0.



Approximating Infinite Horizon by Finite Horizon

Standing assumptions: (A1) E[supy>q V¢] < oo, (A3)limi00 ¥ = Yoo @S

Theorem

Assume (A1) and (A3). If Z; := supj>; Y; = Yt is uniformly integrable, then VéT) — V*as
T — oc.

Proof

LetAr ={T<t* <oc).  0<V* =V <Ef1y 271+ El(Yeo - V7)'].

1st term goes to zero.

2nd term goes to zero. Leter — 0: P(Yoo — Y7 > €7) — 0.

El(Yoo—Y7)"] = Ellyy_ —vi<en) (Yoo = YT) THE[y_ —yyey (Yoo = Y1) < &7+E[ly_ —yyse Z7l-
E[1{YM_YT>ET)ZT] — 0 follows by similar argument as before for 1st term.
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Approximating Infinite Horizon by Finite Horizon

Standing assumptions: (A1) E[sup;>q Yt] <oo.  (A3)lim_ Yt = Yoo a..

{ Theorem

Assume (AT) and (A3). If Z; := sup;> Yj = Yt is uniformly integrable, then VéT) — V*as
T — oo.

( Corollary

Assume (A3). If Y; := By — Ct, where E[sup; |Btl] < oo and C; > 0 and nondecreasing a.s.,
then (A1) holds and VST) — V*

Gongalves (UCL) Stopping and Choosing 41



Approximating Infinite Horizon by Finite Horizon

Standing assumptions: (A1) E[sup;>q Vi] <00, (A3) limo Yt = Yoo @.S.

{ Theorem

Assume (AT) and (A3). If Z; := sup;> Yj = Yt is uniformly integrable, then VST) — V*as
T — oo.

( Corollary

Assume (A3). If Y; := By — Ct, where E[sup; |Btl] < oo and C; > 0 and nondecreasing a.s.,
then (A1) holds and VST) — V*

Proof

E[supi>o Yi] < E[SUpi>gIBtl] < oo = (AT) holds.
Forj>1tY;=Y;=B-Bi+(C;:—C) <B;— Bt

0 < Z;:=supj> Y;— Yt < 2sup; Bl = B'.

E[B'] < 0o, hence E[1yz,55|Z:l] < E[1(1.5B'] — 0 and Z; is uniformly integrable.
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Overview

5. Stopping and Choosing: Selling a House
— Variations



Stopping and Choosing: Selling a House

Accept best offer M; or continue waiting with a per period cost of c.
Interpretation:
Selling a house/asset: offers X; > 0 come in, council tax/management fees c;
Yt = My — ct, where My '= maxs<t Xt.
Same as satisficing, just take T = co.

Xt ~ F,iid; F continuous, strictly increasing, with finite 2nd moment.
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Stopping and Choosing: Selling a House

Accept and get M; - tc;

Refuse and pay ¢ and wait for one more offer tomorrow.

Markov problem; state variable = Y;

Gongalves (UCL) Stopping and Choosing

43



Stopping and Choosing: Selling a House

Accept and get M; - tc;
Refuse and pay ¢ and wait for one more offer tomorrow.

Markov problem; state variable = Y;
Set up Bellman equation; V(Y;) = max{Ys, E[V(Y¢1)] = ¢}.

Define V; := V(Y}); E[V(Y:)] now depends on t!
Simple derivation from before no longer works...
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Stopping and Choosing: Selling a House

Accept and get M; - tc;
Refuse and pay ¢ and wait for one more offer tomorrow.

Markov problem; state variable = Y;
Set up Bellman equation; V(Y;) = max{Ys, E[V(Y¢1)] = ¢}.

Define V; := V(Y}); E[V(Y:)] now depends on t!
Simple derivation from before no longer works...

But this is a monotone problem:

Ve > ElYin | Ftl <= Yt > Elmax{Yy, X1 —tc} | Fl - ¢ <= ¢ >
E[(Xo - (Vi +t0)" | A

Since Y; +tcis increasing int, {Yy > E[Yiq | Fel} C {Yire > ElYiaor1 | Freel} for any
t>0andZ > 0.

Check conditions for approximation: (A1), (A3), and UL...
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Stopping and Choosing: Selling a House

Theorem

Let X, X3, X2, ..., beiid, ¢ > 0,and Yy = X; — tc or Yy = maxs<t Xs — tC.

If E[X*] < oo, then sup; Yy < co a.s. and Yy — —co a.s.
If E[(X*)z] < oo, then E[sup; Y4] < oo.

Proof

See the proof to Theorem 1in Ferguson (2008, Ch. 4, Appendix).
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Stopping and Choosing: Selling a House

Theorem

Let X, X3, X2, ..., beiid, ¢ > 0,and Yy = X; — tc or Yy = maxs<t Xs — tC.

If E[X*] < oo, then sup; Yy < co a.s. and Yy — —co a.s.

If E[(X*)z] < oo, then E[sup; Y4] < oo.

Proof
See the proof to Theorem 1in Ferguson (2008, Ch. 4, Appendix).

(A1): E[X] < 0o = E[sUps>q Yi] < oo. Check.
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Stopping and Choosing: Selling a House

Theorem

Let X, X3, X2, ..., beiid, ¢ > 0,and Yy = X; — tc or Yy = maxs<t Xs — tC.

If E[X*] < oo, then sup; Yy < co a.s. and Yy — —co a.s.

If E[(X*)z] < oo, then E[sup; Y4] < oo.

Proof
See the proof to Theorem 1in Ferguson (2008, Ch. 4, Appendix).

(A1): E[X] < 0o = E[sUps>q Yi] < oo. Check.
(A3): Define Yoo := —00. E[X*] <00 = Y; = Yso. Check.
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Stopping and Choosing: Selling a House

Theorem
Let X, X3, X2, ..., beiid, ¢ > 0,and Yy = X; — tc or Yy = maxs<t Xs — tC.
If E[X*] < oo, then sup; Yy < co a.s. and Yy — —co a.s.

If E[(X*)z] < oo, then E[sup; Y4] < oo.

Proof

See the proof to Theorem 1in Ferguson (2008, Ch. 4, Appendix).

(A1): E[X] < 0o = E[sUps>q Yi] < oo. Check.
(A3): Define Yoo := —00. E[X*] <00 = Y; = Yso. Check.
Uniform integrability: Z¢ := supj¢ Yj = Yt = supj»¢(M; = Myt - je.

Gongalves (UCL) Stopping and Choosing 44



Stopping and Choosing: Selling a House

Theorem
Let X, X3, X2, ..., beiid, ¢ > 0,and Yy = X; — tc or Yy = maxs<t Xs — tC.
If E[X*] < oo, then sup; Yy < co a.s. and Yy — —co a.s.

If E[(X*)z] < oo, then E[sup; Y4] < oo.

Proof

See the proof to Theorem 1in Ferguson (2008, Ch. 4, Appendix).

(A1): E[X] < 0o = E[sUps>q Yi] < oo. Check.
(A3): Define Yoo := —00. E[X*] < 00 = Y; = Yoo. Check.
Uniform integrability: Z¢ := supj¢ Yj = Yt = supj»¢(M; = Myt - je.

Note E[Z] = E [E [supjzo M; —je | MtH where M; := maxs<; Xs and X" :
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Stopping and Choosing: Selling a House

Theorem
Let X, X3, X2, ..., beiid, ¢ > 0,and Yy = X; — tc or Yy = maxs<t Xs — tC.
If E[X*] < oo, then sup; Yy < co a.s. and Yy — —co a.s.

If E[(X*)z] < oo, then E[sup; Y4] < oo.

Proof
See the proof to Theorem 1in Ferguson (2008, Ch. 4, Appendix).
(A1): E[X] < 0o = E[sUps>q Yi] < oo. Check.
(A3): Define Yoo := —00. E[X*] < 00 = Y; = Yoo. Check.
Uniform integrability: Z; := supjsy ¥j = Yt = supjs(M; = Mp)™ = jc.
Note E[Z;] = E [E [supjzo M; -jc| MtH where Mf = Maxs<j Xs and X' := (X = My)".

2 2 )
EIX™)" M = EIX'* IM{] < 00 = Elsupjso M/ —jc | Ml < co = ElZ{] < co.
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Stopping and Choosing: Selling a House

Theorem
Let X, X3, X2, ..., beiid, ¢ > 0,and Yy = X; — tc or Yy = maxs<t Xs — tC.
If E[X*] < oo, then sup; Yy < co a.s. and Yy — —co a.s.

If E[(X*)z] < oo, then E[sup; Y4] < oo.

Proof

See the proof to Theorem 1in Ferguson (2008, Ch. 4, Appendix).

(A1): E[X] < 0o = E[sUps>q Yi] < oo. Check.
(A3): Define Yoo := —00. E[X*] < 00 = Y; = Yoo. Check.
Uniform integrability: Z¢ := supj¢ Yj = Yt = supj»¢(M; = Myt - je.

Note E[Z;] = E [E [supjzo M; -jc| MtH where Mf = Maxs<j Xs and X' := (X = My)".

2 2 )
EIX™)" M = EIX'* IM{] < 00 = Elsupjso M/ —jc | Ml < co = ElZ{] < co.

X-M)*" % 8gast — oo = E[Z] = 0.
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Stopping and Choosing: Selling a House

Theorem
Let X, X3, X2, ..., beiid, ¢ > 0,and Yy = X; — tc or Yy = maxs<t Xs — tC.
If E[X*] < oo, then sup; Yy < co a.s. and Yy — —co a.s.

If E[(X*)z] < oo, then E[sup; Y4] < oo.

Proof

See the proof to Theorem 1in Ferguson (2008, Ch. 4, Appendix).

(A1): E[X] < 0o = E[sUps>q Yi] < oo. Check.

(A3): Define Yoo := —00. E[X*] < 00 = Y; = Yoo. Check.

Uniform integrability: Z; := supjsy ¥j = Yt = supjs(M; = Mp)™ = jc.
Note E[Z;] = E [E [supjzo M; —je | MtH where M; := maxs<; Xs and X" := (X - My)*.
E[(X’+)2 | M = EIX? | My] < 00 —> Elsupjso M/ —jc | M < co = E[Z] < co.

X-M)*" % 8gast — oo = E[Z] = 0.
= suUp;E[Zi] < 00 = sup;E[Z{1i7,54] — 0 asa — oo. Check.
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Stopping and Choosing: Selling a House

Theorem
Let X, X3, X2, ..., beiid, ¢ > 0,and Yy = X; — tc or Yy = maxs<t Xs — tC.
If E[X*] < oo, then sup; Yy < co a.s. and Yy — —co a.s.

If E[(X*)z] < oo, then E[sup; Y4] < oo.

Proof

See the proof to Theorem 1in Ferguson (2008, Ch. 4, Appendix).

(A1): E[X] < 0o = E[sUps>q Yi] < oo. Check.
(A3): Define Yoo := —00. E[X*] < 00 = Y; = Yoo. Check.
Uniform integrability: Z¢ := supj¢ Yj = Yt = supj»¢(M; = Myt - je.

Note E[Z;] = E [E [supjzo M; -jc| MtH where M; = Maxs<j Xs and X' := (X = My)".

2
E[X)” I M = EX? | Ml < 00 = Elsupjso M| —jo | Mi] < 0o = EIZ{] < oc.
X-M)*" % 8gast — oo = E[Z] = 0.
= suUp;E[Zi] < 00 = sup;E[Z{1i7,54] — 0 asa — oo. Check.

Conclude 1-sla is still optimal with infinite horizon!
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Stopping and Choosing: Selling a House

Selling a house with TIOLI offers:
Yi =X —te, Xy ~ F iid.
This is not a monotone problem!
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Stopping and Choosing: Selling a House

Selling a house with TIOLI offers:
Yi = X; — te, X ~ Fiid.
This is not a monotone problem!
Selling a house with distributional uncertainty:
Y¢ = M; = tc, Xy ~ F(- | 8) iid, but ® unknown, 6 ~ P.
Let E[1y, <y | F¢] = F and suppose that F; = 52%:Fg + _t_F; where F; is ECDF,

optt optt
og > 0, and Fq has finite 2nd moment. (E.g., Dirichlet process prior.)

This is a monotone problem and T-sla is still optimal. Prove it!

Gongalves (UCL) Stopping and Choosing 45



Overview
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Learning and Choosing

Next time.
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Overview

7. Diamond's Paradox
— Setup
— Analysis
— The Paradox



The Diamond (1971 JPE) Model (adapted)

Foundational model of price search.
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The Diamond (1971 JPE) Model (adapted)

Foundational model of price search.

Environment
N identical sellers; homogenous good; zero marginal cost (normalisation).
Identical mass 1 of consumers; unit demand (generalises).
Known valuation v > 0. Value from purchase at price pisv - p.
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The Diamond (1971 JPE) Model (adapted)

Foundational model of price search.
Environment
N identical sellers; homogenous good; zero marginal cost (normalisation).
Identical mass 1 of consumers; unit demand (generalises).
Known valuation v > 0. Value from purchase at price pisv - p.
Timing
Sellers set prices p = {p"} C R+.

Consumer knows empirical distribution of prices,
but not which seller sets which price.

Consumer learns price of seller n only by visiting seller.
Visit bears a cost ¢ > 0. (visit, browse, ask for a quote, etc.)

Sellers selected to visit uniformly at random (among those not yet visited).

Following each visit, consumer can either choose to buy good from one of the
sellers they visited or to learn the price of another seller.
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The Diamond (1971 JPE) Model (adapted)

Foundational model of price search.
Environment
N identical sellers; homogenous good; zero marginal cost (normalisation).
Identical mass 1 of consumers; unit demand (generalises).
Known valuation v > 0. Value from purchase at price pisv - p.
Timing
Sellers set prices p = {p"} C R+.

Consumer knows empirical distribution of prices,
but not which seller sets which price.

Consumer learns price of seller n only by visiting seller.
Visit bears a cost ¢ > 0. (visit, browse, ask for a quote, etc.)

Sellers selected to visit uniformly at random (among those not yet visited).

Following each visit, consumer can either choose to buy good from one of the
sellers they visited or to learn the price of another seller.

Key Features
Uncertainty over prices, not match values.
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Solving for Equilibrium Prices

Notation
nt € {1,...,N}: seller sampled at t.

St = {M, ..., n¢}: sellers sampled by t (consideration set).

Ng = {1,.., N} \ St: sellers not yet sampled by t.
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Solving for Equilibrium Prices

Notation
nt € {1,...,N}: seller sampled at t.

St = {M, ..., n¢}: sellers sampled by t (consideration set).

Ng = {1,.., N} \ St: sellers not yet sampled by t.
nt ~ U(N;—1): sellers sampled uniformly at random.
pt = p™ ~ Fy price of sampled seller.
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Solving for Equilibrium Prices

Notation
nt € {1,...,N}: seller sampled at t.
St = {M, ..., n¢}: sellers sampled by t (consideration set).
Ng = {1,.., N} \ St: sellers not yet sampled by t.
nt ~ U(N;—1): sellers sampled uniformly at random.
pt = p™ ~ Fy price of sampled seller.
Xt =V =py My=maxs<v—ps; Yi=M;—tc; Vi=esssupsElVz | Fil
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Solving for Equilibrium Prices

Notation
nt € {1,...,N}: seller sampled at t.
St = {M, ..., n¢}: sellers sampled by t (consideration set).
Ng = {1,.., N} \ St: sellers not yet sampled by t.
nt ~ U(N;—1): sellers sampled uniformly at random.
pt = p™ ~ Fy price of sampled seller.
Xt =V =py My=maxs<v—ps; Yi=M;—tc; Vi=esssupsElVz | Fil
Fix prices and label sellers:p =p' < --- < pN =p.
T optimal stopping by consumer.
Note:Yy=v-p-tc = 1<t

Claim

p=p<v.
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Solving for Equilibrium Prices

Claim

Bzﬁgv.

Proof

Suppose not. If p > v, then seller N has strict incentive to lower price to v — € for some
small enoughe > 0. Thenp = pl<pN=p<v.



Solving for Equilibrium Prices

Claim

Bzﬁgv.

Proof
Suppose not. If p > v, then seller N has strict incentive to lower price to v — € for some

small enoughe > 0. Thenp = pl<pN=p<v.
WTS that seller 1 can increase profits by increasing the price.
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Claim

p=p=<v.

Proof

Prob. purchase 1=P(n;4q = Tandt > t).



Solving for Equilibrium Prices

Claim

p=p=<v.

Proof

Prob. purchase 1=P(n;4q = Tandt > t).

Case 1. At{nyq = T} N {t < t}, seller 1 gets 0, so increasing p; does not lower profits.



Solving for Equilibrium Prices

Claim

p=p=<v.

Proof

Prob. purchase 1=P(n;4q = Tandt > t).
Case 1. At{nyq = T} N {t < t}, seller 1 gets 0, so increasing p; does not lower profits.

Case 2. At{ny =1}, t = 1. Seller 1 can increase pq by ¢/2 and still deter further search:
continuation value is at best v — p — 2¢ < v — (p + ¢/2) — ¢ = value of stopping and
paying p +¢/2.



Solving for Equilibrium Prices

Claim

p=p=<v.

Proof

Prob. purchase 1=P(n;4q = Tandt > t).
Case 1. At{nyq = T} N {t < t}, seller 1 gets 0, so increasing p; does not lower profits.
Case 2. At{ny =1}, t = 1. Seller 1 can increase pq by ¢/2 and still deter further search:
continuation value is at best v — p — 2¢ < v — (p + ¢/2) — ¢ = value of stopping and
paying p +¢/2.
Case 3. At{nyq = Ty N {t >t} t > 1, it must be that My < v - p.
T>t = E[Viq | Fl = Y: = €My, p) > 0.
More: conditional on t > t, 3 finitely many values possible for M; € M = {v - p,p €

o', ...o6M\ {p}}.



Solving for Equilibrium Prices

Claim

p=p=<v.

Proof

Prob. purchase 1=P(n;4q = Tandt > t).
Case 1. At{nyq = T} N {t < t}, seller 1 gets 0, so increasing p; does not lower profits.

Case 2. At{ny =1}, t = 1. Seller 1 can increase pq by ¢/2 and still deter further search:
continuation value is at best v —p — 2¢c < v = (p + ¢/2) — ¢ = value of stopping and
paying p +¢/2. B B

Case 3. At{nyq = Ty N {t >t} t > 1, it must be that My < v - p.

T>t = E[Viq | Fl - Vs =1 e(Mg;p) > 0.
More: conditional on t > t, 3 finitely many values possible for M; € M = {v - p,p €
o', ...o6M\ {p}}.

Hence, seller 1canincreasepq by e’ = MiNye €(M; p)/2 and still deter further search.



Solving for Equilibrium Prices

Claim

p=p=<v.

Proof

Prob. purchase 1=P(n;4q = Tandt > t).
Case 1. At{nyq = T} N {t < t}, seller 1 gets 0, so increasing p; does not lower profits.
Case 2. At{ny =1}, t = 1. Seller 1 can increase pq by ¢/2 and still deter further search:
continuation value is at best v — p — 2¢ < v — (p + ¢/2) — ¢ = value of stopping and
paying p +¢/2.
Case 3. At{nyq = Ty N {t >t} t > 1, it must be that My < v - p.
T>t = E[Viq | Fl = Y: = €My, p) > 0.
More: conditional on t > t, 3 finitely many values possible for M; € M = {v - p,p €
o',...o"\ (.
Hence, seller 1canincreasepq by e’ = MiNye €(M; p)/2 and still deter further search.
Increasing price never reduces profits for seller 1 and as Case 2 occurs wp> 0: found
strictly profitable deviation.
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Suppose p = p < v. WTS that seller 1 can increase profits by increasing the price.

Purchase Tonlyifny = 1.



Solving for Equilibrium Prices

Proof

Suppose p = p < v. WTS that seller 1 can increase profits by increasing the price.
Purchase Tonlyifny = 1.

Case 1. At {nq # 1}, seller 1 gets zero, so increasing its price does not harm profits.



Solving for Equilibrium Prices

Proof

Suppose p = p < v. WTS that seller 1 can increase profits by increasing the price.
Purchase Tonlyifny = 1.
Case 1. At {nq # 1}, seller 1 gets zero, so increasing its price does not harm profits.

Case 2. At {n1 = 1}. Seller 1 can increase price by ¢/2 while still deterring further search:
continuation value is v — p — 2c < v - (p + ¢/2) — ¢ = value of stopping and paying
p+c/2.



Solving for Equilibrium Prices

Proof

Suppose p = p < v. WTS that seller 1 can increase profits by increasing the price.
Purchase Tonlyifny = 1.

Case 1. At {nq # 1}, seller 1 gets zero, so increasing its price does not harm profits.

Case 2. At {n1 = 1}. Seller 1 can increase price by ¢/2 while still deterring further search:
continuation value is v — p — 2c < v - (p + ¢/2) — ¢ = value of stopping and paying
p+c/2.

Increasing price is strictly profitable deviation.
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Diamond’s Paradox

Implications
“Who cares about search costs in the digital age? Such costs are minute!”
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Diamond’s Paradox

Implications

“Who cares about search costs in the digital age? Such costs are minute!”

The Paradox

Any arbitrarily small search cost (¢ > 0) causes the market outcome to jump discontin-
uously from competitive Bertrand outcome (p = 0) to full monopoly outcome (p = V)!
Slightest search friction destroys all price competition.
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A Variation on Diamond’s Paradox

Burdett & Judd (1983 Ecta): when sampling, instead of getting one price quote, get
random sample of k price quotes.

If P(k = 1) = 1, Diamond model; get monopoly price.
If P(k = 1) = 0, Bertrand competition; get competitive price.
If P(k = 1) € (0,1) get price dispersion!

Gongalves (UCL) Stopping and Choosing
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8. References



Some jargon:
With recall: possibility of choosing any of the samples thus far. Without recall: can
only choose current element or sample again.

Without replacement: samples are all distinct. With replacement: can resample
previously observed sample.

Undirected search: fixed order. Directed search: choose the order (more next
lecture).
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